Entropy Numbers, Operators and Support Vector Kernels
نویسندگان
چکیده
We derive new bounds for the generalization error of feature space machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs are based on a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite dimensional unit ball in feature space into a finite dimensional space. The covering numbers of the class are then determined via the entropy numbers of the operator. These numbers, which characterize the degree of compactness of the operator, can be bounded in terms of the eigenvalues of an integral operator induced by the kernel function used by the machine. As a consequence we are able to theoretically explain the effect of the choice of kernel functions on the generalization performance of support vector machines.
منابع مشابه
From Regularization Operators to Support Vector Kernels
We derive the correspondence between regularization operators used in Regularization Networks and Hilbert Schmidt Kernels appearing in Support VectorMachines. More specifically, we prove that the Green’s Functions associated with regularization operators are suitable Support Vector Kernels with equivalent regularization properties. As a by–product we show that a large number of Radial Basis Fun...
متن کاملEnsemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search
In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...
متن کاملThe connection between regularization operators and support vector kernels
In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green's Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regulariz...
متن کاملGeneralization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators Produced as Part of the Esprit Working Group in Neural and Computational Learning Ii, Neurocolt2 27150 Introduction 1
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the eld of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly innnite dimension...
متن کاملGeneralization Performance of Regularization Networks and Support Vector Machines via Entropy Numbers of Compact Operators Produced as Part of the Esprit Working Group in Neural and Computational Learning Ii, Neurocolt2 27150
We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the eld of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly innnite dimension...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999